\qquad
\qquad Period: \qquad

Graphing Calculator Investigation Part I

Use a graphing calculator to answer the following.

1. Order of Operations

a) Do parentheses matter? Compute the following in your calculator: $\quad-9^{2}=\quad(-9)^{2}=$
b) Why are these different? \qquad
c) We know $\frac{100+50}{5}=\frac{150}{5}=3$ How do you put $\frac{100+50}{5}$ into the calculator so that the value is 3 ? What did you have to do?

2. Exponents

Use the key \qquad to make an exponent. Compute the following in the calculator:

$$
7^{9}=\quad 3^{2}+5^{4}=
$$

3. Square Roots, Cube Roots, and Higher Roots

Use the key(s) \qquad to get roots.
$\sqrt[3]{27}=$
$\sqrt[3]{64}=$
$\sqrt[5]{-32}=$
$\sqrt[5]{243}=$

4. Simplify Fractions

Enter $120 \div 180$. You should get 0.6666666667 . To change the decimal back to a fraction, use the keys(s):
Write both the decimal and simplified fraction:

$$
\frac{91}{175}=
$$

$$
\frac{3}{8}+\frac{2}{3}=
$$

5. Graphing Functions

Use the key(s) \qquad to enter an equation that you will graph.
a) Enter $y_{1}=3 x+2$ into the calculator. Where are the variables located on the calculator? \qquad Sketch a graph of the line on the axes provided. You may have to put your calculator's graphing window in "standard" view. Select these keys to get a standard window: \qquad
b) Enter $y=2^{x}$ into the calculator, then sketch the graph.
c) How many points of intersection are there? \qquad
How do you know?
\qquad
\qquad
\qquad
\qquad
6. Clear/Reset the Calculator: Select the keys:

