Math 2
Module 3, Day 1

Name: \qquad
Date: \qquad Period: \qquad
Multipliers and Exponents
Show all work and reasoning. Use a pencil and highlight your answers.
Recall from Math 1 that a multiplier is the change factor in exponential functions. You can take any value and multiply by the change factor to get the value of the next term. You always start with 100% because we begin with 100% of the original value. If the function is decreasing, then subtract the percent decrease from 100% to get a multiplier that will show the remaining value each time. If the function is increasing, then add the percent to 100% to get the original value along with the percent increase. Use a decimal rather than a percent as the multiplier.
EXAMPLES:
a) Leila has $\$ 1000$ saved on the $1^{\text {st }}$ month of the year, and she spends 9% each month thereafter

$$
\begin{array}{r}
100 \% \\
-\quad 9 \% \\
\hline 91 \%
\end{array}
$$

Multiplier $=0.91$
Function: $S(t)=1000(0.91)^{t-1}$

Month	Total \$
1	1000
2	910
3	828.10

b) Connor borrowed $\$ 1500$ with a
4.3% annual interest on the loan

$$
\begin{array}{r}
100.0 \% \\
+\quad 4.3 \% \\
\hline 104.3 \%
\end{array}
$$

Multiplier $=1.043$
Function: $L(t)=1500(1.043)^{t}$

Year	Total $\$$
0	1500
1	1564.50
2	1631.77

c) There were 600 crimes in Oceanside, but the number of crimes lowers by 3.9% per year

$$
\begin{array}{r}
100.0 \% \\
-\quad 3.9 \% \\
\hline 96.1 \%
\end{array}
$$

Multiplier $=0.961$
Function: $C(t)=600(0.961)^{t}$

Year	Crimes
0	600
1	577
2	554

1. Write the multiplier for each scenario. Show work!
a) 6.3% jump in approval for the
b) 45% off sale at Sears president
c) 12.4% drop in cases of flu
d) 9.25% sales tax in Los Angeles
e) 200% increase in tardies
2. Write explicit and recursive functions for each scenario, and make a table showing the first 4 values of the scenario.
a) There were 23 bacteria on the $1^{\text {st }}$ hour with a 13.5% increase in population each hour thereafter
c) A company has a profit of $\$ 2$ million this year, and the profit grows by 47% each year.
d) A \$90 shirt at Nordstrom's goes on sale next week with 25% reduction in price and every week thereafter

Refer to the rules of exponents below. Assume bases in the denominator are not equal to 0 .
Rule \#1: $\quad a^{m} \cdot a^{n}=a^{m+n}$
Rule \#2: $\quad\left(a^{m}\right)^{n}=a^{m n}$
Rule \#3: $(a b)^{n}=a^{n} \bullet b^{n}$

Rule \#4: $\left(a^{m} b^{n}\right)^{p}=a^{m p} \bullet b^{n p}$
Rule \#5: $\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}$
3. Simplify each expression. Assume that any variables in the denominator are not equal to 0 .

$a^{3} \cdot a^{5}$	$\left(b^{2}\right)\left(b^{4}\right)$	$x^{-6} \bullet x^{10}$	$\left(3^{-2}\right)\left(3^{11}\right)$
$2^{4} \cdot 2^{8} \cdot 2^{3}$	$(y)\left(y^{7}\right)\left(y^{10}\right)$	$\left(2 x^{3}\right)\left(-3 x^{4}\right)$	$\left(c^{5} d^{2}\right)\left(c^{9} d^{4}\right)$
$\left(5^{2}\right)^{3}$	$\left(7^{8}\right)^{4}$	$\left(x^{5}\right)^{9}$	$\left(h^{11}\right)^{2}$
$\left(x^{4} y^{3}\right)^{2}$	$\left(3 x^{8}\right)^{5}$	$\left(5 m p^{7}\right)^{3}$	
$\left(\frac{x}{y}\right)^{4}$	$\left(\frac{q^{9}}{r^{4}}\right)^{3}$	$\left(\frac{5}{4}\right)^{6}$	$\left(\frac{2 x^{3}}{3 y^{4}}\right)^{5}$
Refer			

Refer to the rules of exponents below. Assume that variables are not equal to 0 Rule \#6: $\frac{a^{m}}{a^{n}}=a^{m-n} \quad$ Rule \#7: $a^{-n}=\frac{1}{a^{n}}$ or $\frac{1}{a^{-n}}=a^{n} \quad$ Rule \#8: $x^{0}=1$
4. Simplify each expression. Assume that variables are not equal to 0 . Make sure your answers do not have any negative exponents remaining.

$\frac{x^{10}}{x^{4}}$	$\frac{b^{700}}{b^{200}}$	$\frac{6^{5}}{6^{3}}$	$\frac{(-3)^{7}}{(-3)^{6}}$
$\frac{a^{3} b^{8}}{a b^{2}}$	$\frac{p^{15} q^{20}}{p^{14} q^{16}}$	$\frac{2^{7} \cdot x^{12}}{2^{2} \cdot x^{3}}$	$\frac{5^{20} \cdot 11^{17}}{5^{2} \bullet 11^{10}}$
5^{-2}	m^{-6}	$\frac{1}{x^{-3}}$	$\frac{1}{13^{-5}}$
$8 c^{0}$	$\frac{2^{5}}{2^{5}}$	$6 a^{-4}$	$\frac{-3}{y^{-2}}$

