Multipliers and Exponents

Show all work and reasoning. Use a pencil and highlight your answers.

Recall from Math 1 that a <u>multiplier</u> is the <u>change factor</u> in <u>exponential functions</u>. You can take any value and multiply by the change factor to get the value of the next term. You always start with 100% because we begin with 100% of the original value. If the function is decreasing, then subtract the percent decrease from 100% to get a multiplier that will show the remaining value each time. If the function is increasing, then add the percent to 100% to get the original value along with the percent increase. Use a decimal rather than a percent as the multiplier.

EXAMPLES:

a) Leila has \$1000 saved on the 1st month of the year, and she spends 9% each month thereafter

Multiplier = 0.91

Function: $S(t) = 1000(0.91)^{t-1}$

Month	Total \$
1	1000
2	910
3	828.10

b) Connor borrowed \$1500 with a 4.3% annual interest on the loan

Multiplier = 1.043

Function: $L(t) = 1500(1.043)^t$

Year	Total \$
0	1500
1	1564.50
2	1631.77

c) There were 600 crimes in Oceanside, but the number of crimes lowers by 3.9% per year

Multiplier = 0.961

Function: $C(t) = 600(0.961)^t$

Year	Crimes
0	600
1	577
2	554

- 1. Write the multiplier for each scenario. Show work!
- a) 6.3% jump in approval for the president
- b) 45% off sale at Sears
- c) 12.4% drop in cases of flu
- d) 9.25% sales tax in Los Angeles
- e) 200% increase in tardies
- 2. Write explicit and recursive functions for each scenario, and make a table showing the first 4 values of the scenario.
- a) There were 23 bacteria on the 1st hour with a 13.5% increase in population each hour thereafter
- c) A company has a profit of \$2 million this year, and the profit grows by 47% each year.
- d) A \$90 shirt at Nordstrom's goes on sale next week with 25% reduction in price and every week thereafter

Refer to the rules of exponents below. Assume bases in the denominator are not equal to 0.

Rule #1:
$$a^m \bullet a^n = a^{m+n}$$

Rule #2:
$$(a^m)^n = a^{mn}$$

Rule #3:
$$(ab)^n = a^n \bullet b^n$$

Rule #4:
$$(a^m b^n)^p = a^{mp} \bullet b^{np}$$

Rule #5:
$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

3. Simplify each expression. Assume that any variables in the denominator are not equal to 0.

$a^3 \bullet a^5$	b^{-1} (b^{2}) b^{4})	$\begin{vmatrix} x^{-6} \bullet x^{10} \end{vmatrix}$	$\left \left(3^{-2} \right) \! \left(3^{11} \right) \right $
$2^4 \bullet 2^8 \bullet 2^3$	$(y)(y^7)(y^{10})$	$(2x^3)(-3x^4)$	$(c^5d^2)(c^9d^4)$
$(5^2)^3$	(78)4	$(x^5)^9$	$(h^{11})^2$
$(x^4y^3)^2$	$\left(s^6t^5\right)^4$	$(3x^8)^5$	$(5mp^7)^3$
$\left(\frac{x}{y}\right)^4$	$\left(\frac{q^9}{r^4}\right)^3$	$\left(\frac{5}{4}\right)^6$	$\left(\frac{2x^3}{3y^4}\right)^5$

Refer to the rules of exponents below. Assume that variables are not equal to 0

Rule #6:
$$\frac{a^m}{a^n} = a^{m-n}$$

Rule #6:
$$\frac{a^m}{a^n} = a^{m-n}$$
 Rule #7: $a^{-n} = \frac{1}{a^n}$ or $\frac{1}{a^{-n}} = a^n$

Rule #8:
$$x^0 = 1$$

4. Simplify each expression. Assume that variables are not equal to 0. Make sure your answers do not have any negative exponents remaining.

$\frac{x^{10}}{x^4}$	$\frac{b^{700}}{b^{200}}$	$\frac{6^5}{6^3}$	$\frac{(-3)^7}{(-3)^6}$
$\frac{a^3b^8}{ab^2}$	$\frac{p^{15}q^{20}}{p^{14}q^{16}}$	$\frac{2^7 \bullet x^{12}}{2^2 \bullet x^3}$	$\frac{5^{20} \cdot 11^{17}}{5^2 \cdot 11^{10}}$
5 ⁻²	m^{-6}	$\frac{1}{x^{-3}}$	$\frac{1}{13^{-5}}$
$8c^0$	$\frac{2^5}{2^5}$	$6a^{-4}$	$\frac{-3}{y^{-2}}$