Name \qquad
Date: \qquad Period: \qquad

Radicals \& Exponents

Completely show all work and reasoning. Use a pencil and highlight your answers.

1. Rewrite each without the fractional exponent.
a) $2^{5 / 3}$
b) $x^{3 / 4}$
c) $19^{1 / 2}$
d) $4^{6 / 7}$
2. Rewrite each without the radical.
a) $\sqrt[3]{50}$
b) $\sqrt[7]{5^{11}}$
c) $\sqrt[8]{70^{3}}$
d) $\sqrt[5]{2^{9}}$
3. Simplify each expression WITHOUT a calculator. Your answer should still be in exponential form.
a) $8^{5 / 3}$
b) $625^{3 / 2}$
c) $64^{2 / 3}$
4. Simplify each expression. The variables represent non-negative numbers.

a) $\sqrt[3]{-343}$	b) $\sqrt[7]{x^{21}}$	c) $\sqrt[4]{\frac{x^{8}}{16}}$
d) $\sqrt{40}$	e) $\sqrt[3]{54}$	f) $\sqrt[5]{64}$
g) $\sqrt{c^{7} d^{9}}$	h) $\sqrt[8]{p^{5} q^{19}}$	i) $\sqrt[3]{\frac{y^{20}}{z^{12}}}$

5. Rewrite each expression with a single base.
a) $5^{x} \cdot 5^{7}$
b) $\frac{216^{x}}{6}$
c) $81\left(\frac{1}{3}\right)^{x}$
6. Write at least one equivalent expression by deconstructing each exponent.
a) 10^{-x+2}
b) $6^{x / 8}$
c) $2^{5 x+1}$
7. Haley has been studying the growth of a culture of bacteria. She knows the population has been consistently growing by 7% each day. Today she noted there are 450 bacteria in the culture.
a) Write recursive and explicit functions, $P(t)$, representing the growth over t hours.
Recursive:
c) How many bacteria are there 2 and a half days from now?

Explicit:

b) How many bacteria are there 6 days from now?
d) How many bacteria were there 10 days $\underline{a g o}$?
8. Factor completely.
a) $y^{2}-14 y+49$
b) $-27 c^{2}-45 c$
c) $h^{2}-17 h-60$
9. Solve for the variable by factoring and using the zero product property.
a) $x^{2}-5 x-24=0$
b) $a^{2}-81=0$
c) $4 w^{2}+22 w=0$

